Skip to main content

Pathophysiology of Osteoporosis



It is observed that bone fractures increase with age. Another observation is that children have much more proteins and water in their bones as elderly people which have more mineral components in their bones. With increasing the age both components are decreasing and thus come osteoporosis.
Very controversial studies prove that in societies with high milk products consummation is osteoporosis much wider spread as in societies which do not consume milk products. Perplexing, isn`t it?
Bone maintenance is a delicate business. In adults, the daily removal of small amounts of bone mineral, a process called resorption, must be balanced by an equal deposition of new mineral if bone strength is to be preserved. When this balance tips toward excessive resorption, bones weaken (osteopenia) and over time can become brittle and prone to fracture (osteoporosis).
This continual resorption and redeposition of bone mineral, or bone remodeling, is intimately tied to the pathophysiology of osteoporosis. Understanding how bone remodeling is regulated is the key to the effective prevention and treatment of osteoporosis.
Bones, like the framework of an aircraft, have evolved to be light yet strong. These properties are conferred to a large degree by architecture. The long bones are tubular in shape, with a strong outer shell, or cortical layer, surrounding a softer, spongier core called trabecular bone. The combination makes these bones strong and light, but flexible enough to absorb the stress – from high impact exercises – without breaking. The vertebrae are similarly constructed, with a thick cortical layer surrounding sheets of trabecular bone. As a unit, each vertebra can compress when temporarily loaded and then return to their original size.
But unlike an aircraft frame, a skeleton is alive and must be able to grow, heal, and respond to its environment. This is where bone remodeling plays a crucial role. However, there is a downside. As we age, daily remodeling leads to a gradual restructuring of the bone. Resorption of the minerals on the inside of the cortical layer and in the bone cavity itself leads to an inexorable loss of trabecular bone and a widening of the bone cavity. This is partly compensated for by the gradual addition of extra layers of mineral to the outside of the cortical layer.
The upshot is that overall the bones get slightly thicker. But the danger is that they are not getting any denser. In fact, peak bone mass, reached in early adulthood, gradually declines as people get older.
Bone architecture and continual remodeling combine to have a huge impact on the pathophysiology of osteoporosis. For example, young adults with wider femurs might be at higher risk for hip fractures late in life because, on average, wider bones tend to have thinner cortical layers. The thinner this layer is, the more susceptible it will be to resorption later in life.
The balance between bone resorption and bone deposition is determined by the activities of two principle cell types, osteoclasts and osteoblasts, which are from two different origins. Osteoclasts are endowed with highly active ion channels in the cell membrane that pump protons into the extracellular space, thus lowering the pH in their own microenvironment.
This drop in pH dissolves the bone mineral. Osteoblasts, through an as yet poorly characterized mechanism, lay down new bone mineral. The balance between the activities of these two cell types governs whether bone is made, maintained, or lost. The activities of these cells are also intimately intertwined. In a typical bone remodeling cycle, osteoclasts are activated first, leading to bone resorption.
Then, after a brief “reversal” phase, during which the resorption “pit” is occupied by osteoblasts precursors, bone formation begins as progressive waves of osteoblasts form and lay down fresh bone matrix. Because the bone formation phase typically takes much longer than the resorption phase, any increase in remodeling activity tends to result in a net loss of bone. At various stages throughout this process, the precursors, osteoclasts, and osteoblasts communicate with each other through the release of various “signaling” molecules. How these signaling molecules and various other endogenous (such as hormones) or external (such as diet and exercise) factors influence the cells involved in bone physiology is a topic of intense research activity.










Comments

  1. For more information please search for the books "The Theory of Autoimmunity" and "Rebellious Thoughts about Osteoorosis" by Tanya G. Guleria in amazon.com

    ReplyDelete

Post a Comment

Popular posts from this blog

Periprothetische Infektionen: aktueller Stand der Diagnostik und Therapie

N. Renz, A. Trampuz Biofilm-assoziierte Infektionen von Gelenkendoprothesen sind ein herausforderndes und komplexes Krankheitsbild und bedürfen des interdisziplinären Managements von erfahrenen Infektiologen, Mikrobiologen, Orthopäden und Unfallchirurgen. Mit einem optimalen Therapiekonzept werden bei periprothetischen Infektionen Behandlungserfolgsraten von über 90 % erreicht. Infektionen von Gelenkprothesen © Julianemartens/Fotolia 20 Orthopädie & Rheuma 2015; Die Infektionsrate nach Implantation einer Gelenkendoprothese reicht von rund 1% bei Hüft- und Schulterprothesen bis hin zu 2–3% bei Knie-, Sprunggelenk- und Ellbogenprothesen. Die wahre Inzidenz liegt wahrscheinlich aufgrund von nicht erkannten Low-Grade-Infektionen deutlich höher [1]. Bei Wechseloperationen steigt das Risiko einer Infektion auf bis zu 15% [2, 3]. Innerhalb der ersten zwei Jahre nach der Primärimplantation wird das Infektionsrisiko auf 0,5% pro Jahr geschätzt, im weiteren Verlauf beträgt die Infektio

Versteht Trampuz überhaupt von Medizin?

https://www.pro-implant-foundation.org/images/material/Renz_Perka_Trampuz_Management_PI_des_Kniegelenks.pdf Periprothetische Infektionen treten nach primärem Gelenkersatz in 2 bis 3% auf [1]. Bei Wechseloperationen liegt die Infektionsrate deutlich höher (3–10%) [2, 3]. Die tatsächliche Inzidenz von Infektionen wird aufgrund von unerkannten chronischen (s.g. „low-grade“) Infektionen unterschätzt, welche typischerweise in den ersten 2–3 Jahren nach Implantation auftreten. Das Infektionsrisiko wird auf 0,5% pro Jahr innerhalb der ersten zwei Jahre nach Implantation geschätzt, in den folgenden Jahren beträgt die Infektionsrate 0,2% pro Jahr. Aus diesem Grund sind Kenntnisse von diagnostischen und therapeutischen Konzepten essenziell. In diesem Beitrag werden aktuelle Erkenntnisse und die neuesten Empfehlungen hinsichtlich Diagnostik und Therapie von periprothetischen Infektion des Kniegelenkes zusammengefasst. Pathogenese Die Gelenkprothese kann auf drei Wege besiedelt werden (. Tab. 1).

Why Immunization Against Covid-19 Causes Heart Attack?

The so called protective function of the vaccine against Covid-19 is based on the fact that the Spyke protein of Covid-19 coming into contact with our immune system causes the production of antibodies which react with this spyke protein. The human macrophage incorporates this spyke protein on its cell membrane and presents it to the B-cells which produce antibodies against it. Of course we should not forget that this spyke protein has a structure which responds to the ACE-2 receptor. This means that those Macrophages could connect themselves directly with the corresponding ACE-2 receptor through the spyke protein which is expressed on their cell membrane, causing a quick non-specific immune reaction directly against vascular endothelial cells in the heart and kidneys, but also in respiratory epithelia and in the gastrointestinal tract. Perhaps this is the cause of the very quick and sharpened reaction of many people to the vaccine against Covid-19 which is often connected with late